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Introduction
The technique of computational mechanics plays an ever-increasing role in
many areas of scientific and engineering fluid flow and heat transfer
modellings. The complications of Navier-Stokes equations have prompted
analysts to explore in depth the subjects from a much simpler scalar transport
equation. This equation is regarded as a linear model of the Navier-Stokes
equations. We are interested in this equation mainly because it is physically
important by itself and is more amenable to analysis.

The use of an upwind scheme provides a means of giving a bias in favour of
the downward directed information and, thus, enhances the positive influence.
While the stability of the discretized advection-diffusion equation has been
enhanced by the aid of this upwinding treatment, it can simultaneously cause
the accuracy along the direction normal to the local streamline to deteriorate.
These false diffusion errors become even worse as the flow direction deviates
more from the mesh line. This type of numerical error stems mainly from the
implementation of the multidimensional convective flux discretization, which is
formulated on the basis of the local one-dimensional treatment. Improvement on
the prediction accuracy is therefore related to designing a flow-oriented scheme
which is less sensitive to flow analyses.

Over the past few decades, plenty of advection-diffusion schemes have been
proposed and applied with success to multiple dimensions. Among them, the
skew upwind scheme of Raithby[1] and the QUICK-type (quadratic upstream
interpolation for convective kinematics) scheme of Leonard[2] are most popular.
Alternatively, the cubic spline scheme of Patankar et al.[3] and the locally
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analytic differencing (LOAD) scheme of Wong and Raithby[4] have also been
regarded as effective in reducing the false diffusion type simulation errors. In
the finite element counterpart, the streamline upwind Petrov-Galerkin method
of Brooks and Hughes[5] and the reduced integration method of Payre[6]
emerged in the mid-1980s and were recognized as being accurate.

Being encouraged by the successful application of upwind schemes to
different classes of flow simulations, researchers have tended to ask whether
or not upwind schemes are applicable to flow problems involving an interior
layer or a discontinuity. Extensive studies have been conducted in the past to
answer this question. Nowadays, we recognize that standard upwinding
treatments can not prevent the appearance of oscillations near discontinuities.
This awareness has motivated the search for a means to resolve flow
discontinuities. Hughes and his colleagues[7,8] modified the weighting
function by adding a discontinuity capturing operator. This extension is good
in predicting shocks. In the finite difference context, several approaches have
been proposed to achieve the same objective. The underlying concepts
encompass variants of TVD (total variational diminishing)[9], SHARP (simple
high-accuracy resolution program)[10], SMART (sharp and monotonic
algorithm for realistic transport)[11], FRAM (filtering remedy and meth-
odology)[12], FCT (flux corrected transport)[13], and NIRVANA (nonoscil-
latory, integrally reconstructed volume-averaged numerical advection
scheme)[14,15]. Besides the flux corrected transport technique, the above-
mentioned methodologies are, in theory, more or less limited to one-
dimensional analysis. In other words, these schemes are only total variation
diminishing in one dimension but not in multiple dimensions. We aim to cope
with this problem by choosing the presently developed corner skew upwind
differencing scheme (CSUD) as the underlying scheme, in the hope of
suppressing spurious oscillations around jumps. The monotonic solution
pursued in the present analysis is based on the positivity property.

The paper is organized as follows. In section 2, the working equation is first
described. The multi-dimensional corner skew upwind flux discretization
designed to reduce the false diffusion error is introduced in section 3. For the
purpose of completeness, detailed studies on some fundamental issues are
presented in section 4. We then benchmark the proposed scheme through some
well known numerical tests. Also, comparisons with other conventional
schemes are made to assess performance among other flux discretization
schemes. Conclusions drawn from this study are given in the final section.

2. Basic equation and discretization
Each conservation equation for which a solution is sought for an incompressible
Navier-Stokes fluid flow is representable by the following linearized form:

(1)
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where the velocity components (a, b) are regarded as two constants. In equation
(1), the operator ∇ denotes the gradient operator. To close the above parabolic
initial boundary value problem (IBVP), we specify both boundary and initial
condition respectively, as follows:

(2)

(3)

In pursuit of the parabolicity of equation (1), we demand that the diffusivity Γ =
Γ (x, y, t, φ) and the source term f should be uniformly Lipscitz continuous and
bounded. In addition, the coefficients –α, 

–β, –γ in equation (2) are constrained by
–α2 + 

–β2 + –γ 2 > 1.
In seeking a time-dependent solution to the partial differential equation (1),

we perform in turn space discretization and time integration approximations.
In the course of this semi-discretization, we integrate the target equation over an
arbitrary quadrilateral cell so that the partial differential equation is convertible
to an ordinary differential equation while the time derivative terms remain. In
the time integration step, we continuously integrate the resulting ordinary
differential equation by using the explicit Euler-time stepping scheme. In so
doing, we can derive the following algebraic equation for the target equation (1):

(4)

where the Courant numbers ci and the diffusion numbers γx, γy are defined by:

Referring to Figure 1, the subscripts r, l, t, b denote the right, left, top, and
bottom surfaces which are located at i ± 1–2, j and i, j ± 1–2, respectively, for a
control volume (i, j) of interest.

The four leading terms on the right hand side of equation (4) correspond to
the discretized advective fluxes. Finding a means to gain access to these
coefficients is the main focus of the present study. Viscous dissipation terms are,
as usual, approximated by applying a centre-based differencing scheme. From
the physical isotropicity and the mathematical ellipticity standpoints, we can
maintain solution stability for problems of diffusion dominant type. In this
paper, we aim to solve the pure convection transport equation, with the
remainder of the diffusive and source terms being omitted. Without loss of
generality, the values of a and b are taken as two different constants.

The task now remains to represent the advective fluxes φl,φr,φb,φt in terms of
their adjacent nodal values. While much of the previous work has been devoted to
analyses formulated in the one-dimensional context, there is much work still
being done in simulating transport phenomena in a domain of multiple dimen-
sions. Numerical simulation of a pure advection or a convection-dominated flow is
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an area of great interest and importance. Besides the upwind weighted scheme[3],
the second order upwind scheme[3], the power-law differencing scheme[3], and
the locally analytic differencing scheme[4], many existing methods devised to
discretize advective fluxes fall into the QUICK[2] and the skew upwind[1]
categories. In these methods, interfacial velocities are interpolated from the
adjacent nodal values straddling the control surfaces of interest.

Now that there exist various possible means of expressing φr,l,t,b in equation
(4), we feel a need for further assessment. Usually, we benchmark their
approximation quality from different standpoints such as stability and
accuracy. While being a second-order accurate scheme, the use of a central
difference scheme impairs solution stability and causes oscillations primarily
located in regions where flow convection dominates diffusion. In circumstances
where the cell Peclet number is much greater than two, the so-called flow-
direction-dependence upwind differencing is a requisite for acquiring a smooth
transport profile. Although upwinding procedures lead to stable solutions
regardless of the cell Reynolds number, significant amounts of numerical
diffusion arise. It is often the case that an excessive false diffusion error
obscures the physical importance. This has created considerable impetus
towards developing a stable and monotonic multi-dimensional scheme, which
is attainable in a larger scope of Courant numbers. A variant of the skew
upwind discretization schemes will be developed and assessed in the present
study.

3. Skew upwinding scheme
Review on skew upwinding scheme
The skew upwinding scheme of Raithby[1] is a currently popular class of flux
discretization schemes. This class of flux discretization schemes is devised
mainly to reduce the error arising from the streamline-to-grid skewness. Being
influenced by the streamline direction, the specification of the interpolated field

Figure 1.
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variable at control surfaces needs careful consideration. With this in mind,
erroneous numerical viscosities can be mitigated by incorporating possible
flow directions into the finite volume discretization scheme.

As shown in Figure 2, the dependent variable at the right surface is
interpolated by unknowns at one of the six pairs of adjacent nodal points.

Which stencil is utilized depends considerably on the orientation of the local
velocity vector.

As a consequence, the assignment of facial field variables becomes quite
involved. Complications arise due primarily to the flow orientation, grid
uniformity, and the mesh skewness. For brevity, we will only give here the
expression of fr. Derivation on other interpolated quantities shown in equation
(4) proceeds similarly. Based on the premise that the streamline across the
control volume is regarded as piecewise straight, the interpolated value of fr of
Raithby[1] is given by:

(5)

Figure 2.
A sketch illustrating the
conventional skew
upwind scheme
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In the case of α < θ, the original skew upwind differencing (SUD) scheme has
been simplified by Miao et al.[16]. They took either φi,j–js or φj+1,j–js to represent
the value of φr:

(6)

Since then, Eraslan et al.[17] have combined the transport upwind differencing
scheme of Sharif and Busnaina[18] with the skew upwind differencing scheme
of Raithby[1] to form a new upwind scheme, known as the directional
transportive upwind differencing (DTUD) scheme[19]. At each face of the
control volume, both magnitude and direction of a velocity vector are taken into
account for φr. They brought in an adjustable parameter β to construct the
resulting hybrid scheme for φr:

(7)

To overcome the deficiency of the skew upwind scheme, we can also interpolate
φr in a parallelogram shown in the shaded area in Figure 3. This parallelogram
is bounded by two families of parallel lines, of which there is a pair of lines
which are parallel to the velocity vector passing through the point of interest, r.
The interpolation is made by taking the upstream volume areas, namely A0 and
A1 in Figure 3, as the contributing weights. Following this idea, Sheu et al.[19]
developed the volume-weighted skew upwind differencing scheme (VWSUD).
An attribute to this scheme is given by:

Figure 3.
A sketch illustrating the

volume-weighted skew
upwind scheme of Sheu

et al.[19]
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Corner skew upwind differencing scheme (CSUD)
Alternatively to the volume weighted skew upwind differencing scheme, areas
A0, A1 and A2 can be chosen for use. Depending on the velocity direction at two
corner points instead of on the direction at the midpoint of the control surface,
the facial field variable φr is interpolated. As an example, the upstream areas
that are used to determine the weighting coefficients are illustrated in Figure 4.
Depending on the corner velocity directions at ne and se, three distinct areas are
involved. The interpolated value of φr CSUD, referred to as the corner skew up-
wind differencing scheme, can be expressed in terms of A 0, A1 and A 2 as
follows:

(9)

(8)

Figure 4.
A sketch illustrating the
proposed corner skew
upwind differencing
scheme
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where is =  
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Owing to space consideration, we only take case (1) into consideration. The
rest of the interpolated fluxes, φl, φt, and φb, can be similarly derived.
Substituting them into equation (4), the following discrete pure advection
equation results:

φn+1
p – apφn

p – awφn
w – asφn

s – aswφn
sw = 0 (10)

The coefficients in the above equation are tabulated in Table I. For the sake of
comparison, we also summarize in Table I the coefficients corresponding to the
first order upwind and the skew upwind scheme of Raithby[1].

4. Fundamental studies on the CSUD scheme
The decision as to which discretization scheme performs best is a matter of
conjecture unless fundamental studies as well as numerical exercises are
conducted. Hereinafter we have carried out a series of fundamental studies on
CSUD scheme prior to conducting numerical exercises. Without loss of
generality and importance, we restrict ourselves to the pure advection
equation:

(4)

Table I.
Coefficients of the 
advection schemes for 
the case of (a>0,b>0, 
and b–2 >a> b–3)
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(11)

where a, b are constant values. The character inherent to a discretization
scheme is best illuminated by virtue of the modified equation, amplification
factor, and finally, the relative phase error.

Modified equation analysis
Following the nomenclature of Warming and Hyett[20], we derive the modified
equation for the discrete representation of equation (11) using the proposed
CSUD scheme. This partial differential equation corresponds to the actually
solved equation when the CSUD discretization method is applied. After the
substitution of Taylor-series expansions into the corresponding discrete
equation, we can derive the following modified equation:

(12)

Here, the high-order time derivatives have been eliminated by the use of the
intermediate modified equation rather than from the original differential
equation (11). The error term, Res, in equation (12) is thus the result of the flux
discretization and the time stepping approximations:

(13)

For brevity, we tabulate above coefficients in Table II.
Equation (13) enables us to estimate the order of the flux discretization. To

explore in depth the diffusion error arising from the CSUD approximation, it is
necessary to arrange the residual term Res.This manipulation allows Res to be
expressed in terms of the local flow direction s and its normal direction n. Of all
residual terms, we only replace the second-order derivatives with φss, φnn and
φns in the following equation for brevity:

(14)

where ei = cx S1 + cy S2; (i = 1 ~ 3). The expressions of e1, e2 ,and e3 are listed in
Table III.

The first term in equation (14), namely φss, is attributable to the artificial
viscosity that has been introduced along the flow direction. As for φnn, it is
the direct result of the artificial viscosity along the direction normal to the
local streamline. The purpose of conducting the above derivation is two fold:
first, this provides analysts with useful insight into the stabilized mechanism
and helps to explain in detail the consequences of the computed solutions.
Second, this gives evidence as to the reduction of the false diffusion error,
which is the main focus of the present research in devising a multi-

Res e e e H.O.T.,1 ss 2 nn 3 ns= + + +φφ φφ φφ
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dimensional flux discretization scheme capable of providing equal level of
accuracy regardless of the flow direction. Of particular note is that the
existence of e2 and e3 in equation(14) is hardly avoidable when using flow-
oriented schemes. This implies that a discretization scheme pertaining to the
variants of the skew upwind scheme seldom fall into the group of the
streamline upwind schemes.

Thanks to the derivable coefficients e1 ~ e3, we are led to know that the actual
discretization errors in equation (12) are problem-dependent. To explain this, we
rewrite Res as follows:

(15)

With these expressions, we have no difficulty estimating the exponent p and,
thus, concluding that the rate of convergence is associated with the solution
itself for the problem under investigation.

In a constant flow field, we take the problem, as given by the following exact
solution in a square cavity, as an example:

Table II.
Coefficients of the 
modified equivalent 
partial differential 
equation (MEPDE) 
for the case of 
(a>0, b>0, and b2> a > b3 ).
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(16)

We plot separately the contour values of the truncation errors of the second,
third, fourth and fifth derivatives and then sum them in Figure 5. Errors
stemming from flux discretizations are all obtained on the basis of different 
θ = tan–1b/a for a fixed value of ∆t/h. For completeness, we also conduct
convergence test by carrying out calculations at different flow angles. The rates
of convergence are summarized in Table IV. Numerical exercises led us to know
that the discretization error is mainly attributed to the second-order derivatives
since the contour pattern for the second derivative bears a resemblance to that
shown in Figure 5, irrespective of flow angles.

Amplification factor and phase error of CSUD scheme
It has been well known that any sort of implicit artificial viscosity tends to
smear solution gradients, whether physically relevant or numerically induced.
We will study the consequences of performing the presently proposed CSUD
upwinding approximation. The premiss that the difference equation is linear
enables us to apply the method of superposition to examine whether or not the
computed error keeps growing. Through standard Fourier analysis on the

Table III.
Coefficients of the
truncation terms 

written in the streamline
(s,n) co-ordinate system

for the discretized 
advection equation in

two dimensions. 
(Λ = 3 sin θ + 2 cos

θ, θ = tan–1 ( b–a )
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difference equation, we can gain access to the stable regime graphically. In
Figure 6 we plot the three-dimensional modulus of the amplification factor G,
together with its projection against several Courant numbers, defined by 
cx a∆t/h and cy = b∆t/h, for the present CSUD scheme. For a given pair of
Courant numbers, namely (cx, cy), we calculate the maximum value of |G| at

Table IV.
Computed rates of 
convergence of L1, L2, 
L∞ at different flow 
angles θ = 15°, 25°, 35°
and 45°

Figure 5.
Error contours of Res,
as defined in equation
(13), against different
flow angles

u=3v

u=
v

u=2v

y,v

x,u

λ = ∆t/h = 0.004, θ = 45˚

λ = ∆t/h = 0.004, θ = 35˚

λ = ∆t/h = 0.004, θ = 25˚

λ = ∆t/h = 0.004, θ = 15˚

Level Etotal:
1 –0.14121
2 –0.04707
3 0.04707
4 0.14121

Level Etotal:
1 –0.122056
2 –0.0406853
3 0.0406853
4 0.122056

Level Etotal:
1 –0.139042
2 –0.0463473
3 0.0463473
4 0.139042

Level Etotal:
1 –0.132595
2 –0.0441983
3 0.0441983
4 0.132595
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different flow angles, tan–1 b–a , starting from 0° and ending at 90°. With these
extreme values of |G|, we then plot their contour values in Figure 6. Clearly
visible from this plot is that the CSUD scheme by no means accommodates
unless |cx|≤ 1 and |cy| ≤ 1.

Likewise, over a time step the relative phase error, namely θ/θexact, is provided.
Figure 7 reveals how the dispersion (phase) error varies with flow angles and
Courant numbers, defined by ν = √

—–
a2

——
+ b2. These plots are expressed in terms of

the normalized wave lengths, λ /h, starting from a small value to the conceptually
infinite one. Clearly visible from Figure 7 is that the isotropicity of the scheme
increases with the decrease of Courant numbers.

To gain an appreciation for the CSUD scheme, it is appropriate to compare
the proposed scheme with the skew upwind scheme of Raithby[1]. The perfor-
mance, of course, is judged from the contours of the amplification factor, |G|,
and the relative phase error just presented. Examination of the computed
contour plots in Figures 8 and 9 reveal a remarkable difference in the topology
of the stable regime. The sketches in Figure 9 show the rendered stable regime

Figure 6.
Computed modulus of

amplification factor |G|
for the CSUD schemes
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Figure 7.
Plots of ratio of the
relative phase errors
against the normalized
wave length λ/h at
different values of
Courant number ν. 
(a) CSUD scheme; 
(b) SUD scheme
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underlying the skew upwind scheme of Raithby is confined to a narrow strip
adjacent to 45°. The two-dimensional stability map shown in Figure 8 gives a
rather clear picture in showing a marked stability improvement in using the
presently proposed flux discretized scheme over the conventional, skew upwind
scheme. With this overwhelming advantage, whether or not the superiority of
CSUD scheme over the SUD scheme is truly attained depends on the relative
phase error. Clearly, as the dimensionless wavelength decreases, the relative
phase error of the skew upwind scheme, as shown in Figure 7(b), ceases to be
positive for all Courant numbers. According to Figure 7, the computed scalar
transport profile underlying the skew upwind scheme is proven to be more
distorted, as compared with the profile computed using the CSUD scheme. The
study reported thus far supports us to conclude that the proposed scheme
allows a large flexibility in yielding a stable solution for problems with high
Peclet number.

Figure 8.
A contour plot of

maximum values of |G|
against cx and cy:
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Solution monotonicity
When faced with discontinuities, upwind schemes fail to capture such extreme
physics sharply unless spatial-temporal spacings follow the findings of
Harten, guided by the total variation diminishing constraint condition[9].
According to the study of Goodman and LeVeque[21], the accuracy order of
numerical solutions for the hyperbolic equation in two dimensions is at most
first-order if schemes underlying the concept of TVD are used. Constructing a
high-order monotone scheme consequently poses a challenging task. Much
research attention has been devoted to constructing different kinds of flux
limiters and applying them to remedy the erroneous fluxes arising from the
underlying high-order discretization schemes. Through the work of
Spekreijse[22], accuracy of the solution can be improved by a non-linear
addition of flux limiters to the linear scalar equation. This finding led us to
realize that there exists no definite contradiction between the monotonicity
and an accuracy order higher than one. In short, we follow the definition of
positivity of coefficients, serving as a guide for retaining the solution
monotonicity, rather than on the idea of TVD.

Figure 9.
A contour plot of
maximum values of |G|
against cx and cy:
|G|SUD
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In the case of a > 0, b > 0, and a > b/2 equation (10) can be rearranged to the
following form:

(17)

where An
w = –aw, An

s =–as, A
n
sw = –asw are defined in Table I.

Definition: Discretization scheme (17) is called monotonic if

(18)

and if

(19)

Theorem: If scheme (17) is monotonic, then

(20)

By virtue of the above definition, we can define the monotonic regime in regions
where the coefficients shown in equation (17) satisfy the positivity conditions
given by equations (18) and (19). We plot, in Figure 10, four coefficients, appear-
ing in equation (10), where cx = a∆t/h and cy = b∆t/h are abscissa and ordinate,
respectively. A close examination of these plots reveals that the monotonic area
does exist in the square 0 ≤ cx, cy ≤ 1. We also plot coefficients of the similar
kinds for the SUD scheme and find that there is no hope of finding a workable
positivity regime no matter what Courant numbers will be. It implies that it is
not theoretically feasible for us to apply SUD scheme to obtain non-oscillatory
solutions in regions having discontinuities. Before entering into the result
section, it is worthwhile to conclude that from Figure 11 the stable region based
on the concept of positivity is a subset of that underlying the Von-Neumann
stability analysis. This implies that requiring positivity is a stronger
requirement than simple stability.

5. Numerical results
Advection of a cosine-hill
In the absence of high gradients in the domain of interest, it is best to conduct a
benchmark test to assess the performance of the CSUD scheme. To begin with,
we consider a cosine-shaped scalar profile in a given velocity field which
involves 2πof flow angles. This problem is known as the rotation of a cosine-hill
and is regarded as a very good test to eludicate the effectiveness of the multi-
dimensional advective flux discretization scheme. In this test, the cosine-hill,
with a base radius of r = 0.25 and a height of h = 1.0 , is initially located at (0.5,
0.75). In a square domain of unit length, this scalar profile turns around the
centre at (0.5, 0.5). Inside the cavity of interest, there exists a stationary rotating
velocity field having an angular velocity ω = 1.0:
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(21)

In the square domain of unit length, it is covered with 100 x 100 nodal points
which are uniformly distributed. Attention is now directed to the simulation
accuracy, and then the solution monotonicity. As regards accuracy, in Figure 12
we plot the computed scalar field, together with the exact profile, and its errors
computed at different cross sections. This figure provides us details of false
diffusion errors in the flow evolution. As seen in Figure 13, in which the
computed L2 errors are plotted against the time frame (or θ) over the whole
domain, there exist minor variations among skew upwind variants.

The modified equation, expressed in terms of the unit directions s and n, is
intended to show how the numerical diffusion obscures the real physics. For
a more thorough understanding of the error distribution, we plot the artificial
viscosity along the flow and along its normal counterpart in Figure 14.
Along the flow direction, artificial viscosity computed from the present
CSUD scheme is smaller than that of the skew upwind difference scheme of
Raithby. On the contrary, the artificial viscosity added to the discretization

Figure 10.
Contour plots of
coefficients, as defined
in equation (9) against
cx and cy;
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error arising from the use of skew upwind difference scheme is smaller than
the CSUD flux advection scheme normal to the rotation direction. We can also
distinguish solution errors along the s and n directions against the flow
angles 0° ≤ θ ≤ 360°. In Figure 13, the computed errors of φare plotted at r =
0.25. Along the flow direction, the error tends to grow from the upstream side
to the downstream side in a monotonic-like manner for both schemes. The
increase of error is a result of the accumulation of the entire downstream
contribution. The computed error along the direction normal to the flow
direction increases smoothly, starting from θ = 0° and ending at θ = 360°. As
seen in Figure 13, the local maxima and minima exist in the vicinity of 90°,
180°, 270° and 135°, 225°, 315° respectively. This illustrates the fact that the
proposed CSUD scheme yields a more accurate solution at flow angles θ/45°
= /1, where /1 is a whole number, but a less accurate  solution near θ/45° =
whole number.

Figure 11.
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Mixing of a hot with cold front
To show the applicability of CSUD scheme to problems involving variable
advection velocities and high solution gradients, we consider here the mixing of
cold and warm fronts in a square domain as defined in –4 ≤ x ≤ 4, –4 ≤ y ≤ 4.
Initially, the temperature profile is given by

(22)

Subsequent to t = 0, the temperature profile varies with time owing to the
rotatory velocity field centred at the origin:

(23)

In the above equation (23), T denotes the ratio between the tangential velocity at
a spatial location, which is distant from the centre with a length of r, and its
maximum velocity:

(24)

Figure 12.
Computed solution
profiles φ for the
problem defined in
section 5 along erect
cross-sections
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The analytic solution takes the following form:

(25)

where ω = T/r denotes the rotation frequency. We designate the positive value
of φas the warm fluid flow; while the negative value as the cold fluid flow. In the
present computation, the number of grid points is 160 × 160, and the grid
spacing is, consequently, a constant ∆x = ∆y = 0.05. Figure 15 shows the
calculated solutions at t = 4.0. The given rotational velocity field starts twisting
the narrow contact line from the very beginning, across which there exist high
gradients. Clearly seen from Figure 15 is that the solid lines penetrate to the
upper zone. This implies that the rotating flow gradually distorts the initial
temperature profile taking a form of sharp profile and forms a spiral type
profile. Besides serving as a benchmark test for a variable scalar problem, this
problem also enables us to test whether the proposed discretization scheme has
the ability to capture high gradients.

To examine the overall accuracy of this stringent problem, it is suitable to
plot in Figure 16 the RMS errors, measured in terms of L1, L2 and L∞ norms,
against the time evolution. Prediction errors are manifested only along this
specific direction. To explain this, we have plotted the distribution of φagainst

Figure 13.
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x and y at four cross-sections shown in Figure 15. These figures are useful in
demonstrating that the prediction inaccuracy resulting from the use of CSUD is
attributable to the artificial dissipation along the normal flow direction. We
have also plotted in Figure 17 the computed error of φalong three circles having
radiuses r (= 0.5, 1.0 and 1.5) where dissipation along the normal flow direction.
We have also plotted in Figure 17 the computed error of φ along three circles
having radiuses r (= 0.5, 1.0 and 1.5) where the origin is located at (0, 0).
Numerical exercises tell us that there exists a close resemblance between the
error patterns computed from SUD and CSUD schemes. The merit of the
conventional skew upwind differencing scheme is appraised here through this
test case, as viewed from the accuracy point of view. We have, thus, elucidated
on the dilemma of trying to enhance the solution stability and at the same time
increased the solution accuracy.

Pure advection of a discontinuity in a rotational velocity field
Having justified the applicability of CSUD scheme to two classes of problems
just presented, the question now arises as to whether the proposed corner
skew upwind flux discretization scheme is applicable to a flow problem
classified as the discontinuous type. To answer this question, we perform a

Figure 14.
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more stringent benchmark test associated with the interior discontinuity. This
class of problems is challenging computationally, as complicated by multiple
flow directions and solution discontinuities. One of the best problems in this
regard is the problem of Smith-Hutton[23]. This problem corresponds to
analysing the transport of a discontinuous scalar in a rotational velocity field
given by:

(26)

where

–1 ≤ x ≤ 1, 0 ≤ y ≤ 0.5.

The scalar profile pertaining to the inlet boundary in Figure 18, –1 ≤ x ≤ 0, y =
0, sharply varies from φ = 0 to φ = 2 at a point (–0.5, 0.0). This inlet value
remains 2 in the range of –0.5 ≤ x ≤ 0, y = 0. Boundary conditions are classified
as the Dirichlet type where the value of φ is set zero, exclusive of the outflow
boundary defined in 0 ≤ x ≤ 1 and y = 0, on which the working variable is
allowed to float. The calculations were carried out on a 80 × 80 uniformly

Figure 15.
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distributed grid system. Particular attention is directed towards the region near
the half circle of radius 0.5, centred at the origin (0.0, 0.0), where a sudden
change of φ is expected.

In Figure 19, we have plotted the computed profile of φ against different
angles θ, as measured from the axis of the inlet. According to these plots, the
employed CSUD scheme can be referred to as a good wiggle suppressant
since grid oscillations in the vicinity of the interior discontinuity, as
computed from the SUD scheme, have been well-suppressed. This implies
that the stability of the CSUD scheme is still maintained but, at the same
time, the solution is comparatively smeared, as compared with the skew
upwind scheme.

6. Conclusions
We have proposed here a CSUD scheme to simulate the transport phenomena in
two dimensions. For the sake of comparison, two conventional upwinding
schemes have also been considered. We assess the proposed scheme by virtue of
the amplification factor, relative phase error, and numerical rate of convergence
analyses. According to the results rendered from three test problems of smooth
and discontinuous type, we draw the following conclusions:

Figure 16.
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Section 5
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Figure 17.
Computed errors along
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• By virtue of the derived modified equation analysis, expressed in terms
of the local flow direction and its unit normal direction, the investigated
CSUD scheme is biased in favour of solution accuracy along the
streamline. This flow-oriented multi-dimensional advective flux
discretization scheme is, however, not classified as a streamline upwind
scheme since it is not purely upwinded along the flow direction. In the
direction normal to the local streamline, however, artificial dissipation
taking a value greater than that of the skew upwind scheme is implicitly
added. This may explain why oscillations taking a form similar to those
observed in the vicinity of the contact discontinuity have been
suppressed. The rate of convergence is mainly attributable to error terms
of second derivatives.

• The developed CSUD scheme does yield oscillation-free results without
necessitating the use of flux limiters. Numerical exercises for a nearly
discontinuous and a truly discontinuous type of test problems reveal the
drawback of CSUD in that along the direction normal to the local flow
direction this scheme is more dissipative than the original skew upwind
scheme of Raithby. Through this study, we  conclude that the proposed
CSUD scheme is monotone and the solution accuracy, only first order
correct, is not as good as a non-linear method where flux limiters are
invoked.

Figure 19.
The computed solutions
of φand its associated
differences for the
problem defined in
Section 5 at different
cross-sections
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